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a b s t r a c t

Using polynomials to represent the angular variation of the radiation intensity is usually
referred to as the PN or spherical harmonics method. For infinite order, the representation
is an exact solution of the radiation transport solution. For finite N, in some physical situ-
ations there are oscillations in the solution that can make the radiation energy density be
negative. For small N, the oscillations may be large enough to force the material tempera-
ture to numerically have non-physical negative values. The second-order time evolution
algorithm presented here allows for more accurate solutions with larger time steps; how-
ever, it also can resolve the negativities that first-order time solutions smear out. Therefore,
artificial scattering is studied to see how it can be used to decrease the oscillations in low-
order solutions and prevent negativities. Small amounts of arbitrary, non-physical scatter-
ing can significantly improve the accuracy of the solution to test problems. Flux-limited
diffusion solutions can also be improved by including artificial scattering. One- and two-
dimensional test results are presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In an earlier paper [1], a simple second-order time evolution method was demonstrated for the solution of the flux-lim-
ited diffusion approximation to the radiation transport equation. Those calculations included a material energy equation
with thermal conduction. The algorithm was stable, robust, accurate, and computationally faster than the standard backward
Euler first-order solution. Here that algorithm will be shown to be equally effective for the time evolution of the PN repre-
sentation of the transport equation.

Because of the great computational cost of high angular-order solutions of the transport equation, low-order approxima-
tions are of great interest and there exist a great variety of different approximations (see [2]). If the angular variables are
replaced by polynomials, one has PN or spherical harmonics methods. If the angles are sampled at specific angles with given
weights, then one generically has SN or discrete ordinates methods. For large N, both approaches can give accurate represen-
tations of the transport equation. At low order, both methods have problems. Discrete ordinates methods suffer from what
are called ‘‘ray effects”. This problem has been studied for decades and has an extensive literature. See this textbook [3] and a
recent paper [4] for examples and earlier references.

All orders of the PN approximation have continuous representations in angle and therefore do not suffer from ray effects.
Instead they display space–time oscillations that are just as onerous as ray effects and just as difficult to deal with in numer-
ical algorithms, especially at low order where the amplitudes of the oscillations are larger. In some problems the oscillations
are large enough to drive the radiation energy negative. The inherent positivity properties of the PN and the simplified PN

methods are discussed in [5]. They derive a simplified P3 that is strictly positive, but it is probably too diffusive and too spe-
cialized to be useful in practical calculations. More discussion of PN positivity is given in [9]. There are ways to reduce spatial
c. All rights reserved.
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oscillations by using a Riemann solver and upwind discretization or discontinuous Galerkin methods [6–11]. Unfortunately,
some of these methods give results that do not match the asymptotic diffusion limit and would not be acceptable for most
thermal radiation transport problems. Most of these more sophisticated spatial discretizations add significantly to the non-
linearity of the equations and are still in the research stages of their development. Some of them exist only on 1D meshes.
Therefore, the spatial discretization presented in Section 2 is a simple one that conserves energy locally and reduces to cen-
tral differencing when opacities are constant.

In Ref. [2], the lowest-order expansion, linear in angle, P1 representation was modified so that it had the correct propa-
gation velocity in optically thin media. The unmodified equation causes wave fronts to propagate at c=

ffiffiffi
3
p
� 0:577c instead of

c, where c is the speed of light. The improved P1 was obtained simply by multiplying the time derivative term in the flux
equation by a scale factor (see the next section). This modification to the P1 equation does not affect its diffusion limit
[12], but it does affect the time scale for the damping of transient waves [13]. Similar modifications will be shown for
N = 3 and 5 in Section 3 of this paper. In addition to correcting the propagation velocity in thin media, these modifications
decrease the amplitude of the oscillations in the numerical solutions. Unfortunately, this decrease does not eliminate the
problem of negative radiation energy density; it just decreases the severity of the problem slightly.

The problem with low-order methods is that the radiation gets lumped into a small number of angles or a low-order poly-
nomial that poorly represent reality. The scattering of photons is a physical process that redistributes the photons from one
angular direction to another. Here, artificial scattering will be used as a numerical adjustment to smear out the solution from
low-order PN to better approximate the correct solutions to some test problems. It will be shown in Sections 4 and 5 that
small amounts of scattering can also improve the accuracy of flux-limited diffusion solutions.

The next section of this paper will derive the equations for the second-order time evolution of the P1 equations. Then a
slightly different algorithm will be shown for N = 3 and 5 in Section 3. These methods will be compared to Su and Olson
[14] and McClarren et al. [15] analytic test problem in Section 4. Following in Section 5 will be a comparison to an opti-
cally thin test problem. A two-dimensional, multi-material problem will be presented in Section 6. A brief summary is in
Section 7.

2. P1 equations

Following the notation used in earlier work [1,2], the zeroth- and first-angular moments of the transport equation are
written as:
1
c
@E
@t
þr � F ¼ raðT4 � EÞ; ð1Þ

g
c
@F
@t
þ 1

3
rE ¼ �rtF: ð2Þ
Here E is the radiation energy density, t is time, c is the speed of light, F is the radiation flux, ra is the absorption opacity, T is
the material temperature, g is an adjustable coefficient, and rt is the total opacity, the sum of absorption and scattering
(rt = ra + rs). Here we are using units such that E ¼ T4

r , where Tr is the radiation temperature. The adjustable coefficient,
g, is set to unity for the standard P1 equation. To have a wave front in a thin medium propagate at c, g must be set to a value
of 1/3. Results will be shown for the full range of g. The diffusion approximation is achieved by setting g = 0. The material
equation to be solved with the above radiation moment equations is given by:
cV

c
@T
@t
�r � ðKrTÞ ¼ raðE� T4Þ; ð3Þ
where cV is the heat capacity, and K is the material conduction coefficient.
The time evolution of these equations will use a three-time level backward difference formula that reference [1] general-

ized to variable time steps:
Enþ1 ¼ aEn þ ð1� aÞEn�1 þ bDt
@E
@t

����
nþ1

; ð4aÞ

a ¼ ð1þ qÞ2

1þ 2q
; b ¼ 1þ q

1þ 2q
; q ¼ tnþ1 � tn

tn � tn�1 ; ð4bÞ
where Dt is the time step, Dt = tn+1 � tn, and n indicates the time level. In practical calculations, one limits how quickly the
time step is allowed to increase so that 0.1 6 q 6 1.25. Therefore, the coefficients in Eq. (4) are very well behaved. For con-
stant time step size, q is unity, a = 4/3, and b = 2/3. Ref. [10] used the constant time step version for solving the radiation only
PN equations. Ref. [1] showed that this numerical scheme is robust over a wide range of time steps when solving flux-limited
diffusion coupled to material conduction. Here that same robustness will be shown for solving the P1 equations with and
without material conduction. Inserting Eq. (1) into (4) and rearranging the terms gives
ð1þ bcDtrnþ1
a ÞEnþ1 þ bcDtr � Fnþ1 ¼ aEn þ ð1� aÞEn�1 þ bcDtrnþ1

a ðTnþ1Þ4: ð5Þ
Similarly, using the form of Eq. (4) for the radiation flux and material temperature and inserting Eqs. (2) and (3) produces
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ð1þ bcDtrnþ1
t =gÞFnþ1 þ bcDt

3g
rEnþ1 ¼ aFn þ ð1� aÞFn�1 ð6Þ
and
1þ bcDtrnþ1
a

cnþ1
V

ðTnþ1Þ3
" #

Tnþ1 � bcDt
cnþ1

V

r � ðKnþ1rTnþ1Þ ¼ aTn þ ð1� aÞTn�1 þ bcDtrnþ1
a

cnþ1
V

Enþ1: ð7Þ
The energy balance equation, Eq. (5), is strongly coupled to the material equation, Eq. (7), through the absorption and emis-
sion terms. All three equations are strongly nonlinear because of the implicit evaluation of the opacities, heat capacity, and
thermal conduction coefficient. Ref. [1] showed that a linearization of the material temperature and a simple operator split-
ting technique can be used to efficiently solve the flux-limited diffusion version of these equations. Since the temperature
and material coupling terms here are identical to the flux-limited diffusion equations, that same linearization and operator
splitting works well with these equations. Readers interested in a more detailed discussion should read [1]. Only an outline
of the full derivation and explanation is presented here.

The nonlinearity of the temperature can be removed by using a Taylor series expansion:
ðTnþ1Þ4 � ðT�Þ4 þ DT
@ðT�Þ4

@T
¼ ðT�Þ4 þ ðTnþ1 � T�Þ4ðT�Þ3 ¼ ðT�Þ3ð4Tnþ1 � 3T�Þ; ð8Þ
where T* is a reference temperature. In order to get second-order accuracy, one should use the previous iteration’s value of
Tn+1for T*. As the iterations at each time step converge, the equation coefficients and the physical variables
ðrnþ1

a ;rnþ1
t ; cnþ1

V ;Knþ1Þ will be evaluated at the correct implicit temperature.
Solving Eq. (6) for Fn+1 and substituting it into Eq. (5) results in two coupled diffusion-like equations for En+1 and Tn+1. They

could be solved simultaneously as one large system; however, Ref. [1] found that it was much more efficient computationally
to use operator splitting to solve two smaller systems. The first phase of the operator split is to lag in time the conduction
term in Eq. (7). Using Eq. (8), one can then solve for the temperature
1þ 4bcDtrnþ1
a

cnþ1
V

ðT�Þ3
" #

T 0 ¼ aTn þ ð1� aÞTn�1 þ bcDtrnþ1
a

cnþ1
V

½E0 þ 3ðT�Þ4� þ bcDt
cn

V

r � ðKnrTnÞ; ð9Þ
where the prime superscript designates an intermediate time between n and n + 1. Inserting this result into Eq. (5) and rear-
ranging the terms gives
1þ bcDtrnþ1
a

1þ 4bcDtrnþ1
a

cnþ1
V

ðT�Þ3

2
64

3
75E0 � bcDtr � F 0

¼ aEn þ ð1� aÞEn�1 þ 4bcDtrnþ1
a ðT�Þ3

1þ 4bcDtrnþ1
a

cnþ1
V

ðT�Þ3
aTn þ ð1� aÞTn�1 � 3

4
T� þ bcDt

cn
V

r � ðKnrTnÞ
� �

; ð10Þ
where, for simplicity of notation, the flux from Eq. (6) has not been inserted. Eq. (10) is a diffusion-like equation with a more
complicated than usual main diagonal and right hand side. In one dimension, it represents a tridiagonal system of equations,
while in 2D there are five diagonals. Once Eq. (10) is solved for the time advanced radiation energy density, Eq. (9) is trivial to
solve for the new material temperature.

The second phase of the operator split is to solve for the implicit nonlocal material conduction and update the radiation
energy density for the new temperature through the local absorption and emission. After some intermediate steps shown in
[1], one obtains
1þ 4bcDtrnþ1
a ðT�Þ3

ð1þ bcDtrnþ1
a Þcnþ1

V

" #
Tnþ1 � bcDt

cnþ1
V

r � ðKnþ1rTnþ1Þ

¼ T 0 þ bcDtrnþ1
a

ð1þ bcDtrnþ1
a Þcnþ1

V

½ðT 0Þ4 þ 3ðT�Þ4� � bcDt
cn

V

r � ðKnrTnÞ; ð11Þ

Enþ1 ¼ E0 þ bcDtrnþ1
a ½ðTnþ1Þ4 � ðT 0Þ4�=ð1þ bcDtrnþ1

a Þ: ð12Þ
After a diffusion solve for the temperature, the update to the energy density is easy. With a new temperature, the physical
coefficients must be reevaluated and the process repeated until convergence is achieved. However, it was found in [1,16] that
incomplete convergence of this type of iteration does not destroy second-order accuracy. Most numerical cells converge
immediately to their final result. Only cells near wave fronts and gradients are slower to converge. Stopping at three itera-
tions did not cause any accumulation of errors in the test problem studied in [1]. That same multi-material problem is used
in Section 6 to test the P1 equations and the same result is found. Therefore, all the 2D calculations shown here will use a
maximum of three iterations per time step.
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Since the radiation momentum equation, Eq. (6), is quite different from the flux-limited diffusion equation analyzed in
[1], some additional discussion needs to be given as to how it is finite differenced. This is most easily presented in one
dimension. The generalization to multi-dimensions is straightforward. Traditionally, a staggered mesh is used where the
radiation energy density is located at cell centers and the flux is on cell edges. Quantities that are at cell centers are labeled
with a subscript of i, while i ± 1/2 is used for cell edges. The opacities are assumed to be constant within a cell and the energy
density is represented as piecewise linear within each half of a cell, from cell center to cell face. The 1D flux from Eq. (6) can
be evaluated as two different expressions, one from the right and one from the left cell. However, since E and F are assumed
to be continuous at a cell face, these two finite differences must be equal and give
Fnþ1
iþ1=2 ¼ bnþ1

i aFn
iþ1=2 þ ð1� aÞFn�1

iþ1=2 �
2bcDt
3gDz

ðEnþ1
iþ1=2 � Enþ1

i Þ
� �

¼ bnþ1
iþ1 aFn

iþ1=2 þ ð1� aÞFn�1
iþ1=2 �

2bcDt
3gDz

ðEnþ1
iþ1 � Enþ1

iþ1=2Þ
� �

; ð13Þ
where a temporary energy density has been introduced on the cell face, Enþ1
iþ1=2, and the coefficient is defined as
bnþ1
i � 1

1þ bcDtrnþ1
t;i =g

: ð14Þ
In order to keep the equations simpler, a uniform cell size of Dz is assumed. Solving for the face energy density gives
Enþ1
iþ1=2 ¼

ðbnþ1
i � bnþ1

iþ1 Þ½aFn
iþ1=2 þ ð1� aÞFn�1

iþ1=2� þ 2bcDt
3gDz ðb

nþ1
i Enþ1

i þ bnþ1
iþ1 Enþ1

iþ1 Þ
2bcDt
3gDz ðb

nþ1
i þ bnþ1

iþ1 Þ
: ð15Þ
Substituting this back into Eq. (13) gives
Fnþ1
iþ1=2 ¼ bnþ1

iþ1=2 aFn
iþ1=2 þ ð1� aÞFn�1

iþ1=2 �
bcDt
3gDz

ðEnþ1
iþ1 � Enþ1

i Þ
� �

; ð16Þ
where the coefficient averaged for the face is
bnþ1
iþ1=2 �

1
1þ bcDt

2g ðr
nþ1
t;i þ rnþ1

t;iþ1Þ
: ð17Þ
Substituting Eq. (16) into Eq. (10) gives terms that look like traditional diffusion finite differencing and other terms from the
flux at past time steps that are moved to the right hand side of the equation. By insisting that the flux is continuous across a
cell face, this differencing scheme preserves energy locally. The energy that flows out of one cell face is identical to the en-
ergy that flows into the next one.

3. P3 and P5 equations

The next higher-order angular expansions will be presented here in only one dimension. The test problems analyzed with
P3 and P5 will be one-dimensional slabs. Partially following Pomraning’s [17] notation, the specific intensity of the radiation
field, I, is expanded in terms of Legendre polynomials
Iðz;l; tÞ ¼
X1
l¼0

ð2lþ 1Þc
4p

/lðz; tÞPlðlÞ; ð18Þ

/lðz; tÞ ¼
2p
c

Z þ1

�1
dlPlðlÞIðz;l; tÞ; ð19Þ
where l is the Legendre expansion order, l is the angle cosine, z is the spatial coordinate, Pl is the lth Legendre polynomial,
and /l is the lth Legendre moment of the radiation field. The one-dimensional transport equation can be written in the form
1
c
@I
@t
þ l @I

@z
� ra

cT4

4p
� I

 !
� rs

cE
4p
� I

� �
¼ 0: ð20Þ
Taking the zeroth angular moment of this transport equation produces
1
c
@/0

@t
þ @/1

@z
� raðT4 � /0Þ ¼ 0; ð21Þ
which is identical to Eq. (1) if one makes the identification /0 = E and /1 = F. Higher Legendre moments of the transport equa-
tion can be written as
2lþ 1
c

@/l

@t
þ l

@/l�1

@z
þ ðlþ 1Þ @/lþ1

@z
� ð2lþ 1Þrt/l ¼ 0: ð22Þ
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The traditional method for truncating this series expansion is to set /l+1 = 0. Therefore, for the P3 expansion, in addition to Eq.
(21), includes
g1

c
@/1

@t
þ 1

3
@/0

@z
þ 2

3
@/2

@z
� rt/1 ¼ 0; ð23Þ

g2

c
@/2

@t
þ 2

5
@/1

@z
þ 3

5
@/3

@z
� rt/2 ¼ 0; ð24Þ

g3

c
@/3

@t
þ 3

7
@/2

@z
� rt/3 ¼ 0; ð25Þ
where the factors on the time derivatives are introduced just as in Eq. (2). The material equation using the notation in this
section becomes
cV

c
@T
@t
�r � ðKrTÞ � rað/0 � T4Þ ¼ 0: ð26Þ
Using the form of the time evolution in Eq. (4) for each of the P3 equations and rearranging the terms yields
½1þ bcDtrnþ1
a;i �/

nþ1
0;i ¼ a/n

0;i þ ð1� aÞ/n�1
0;i � bcDt

1
Dz
ð/nþ1

1;iþ1=2 � /nþ1
1;i�1=2Þ � rnþ1

a;i ðT
nþ1
i Þ4

� �
; ð27Þ

1þ bcDt
2g1

ðrnþ1
t;i þ rnþ1

t;iþ1Þ
� �

/nþ1
1;iþ1=2 ¼ a/n

1;iþ1=2 þ ð1� aÞ/n�1
1;iþ1=2 �

bcDt
3g1Dz

½/nþ1
0;iþ1 � /nþ1

0;i þ 2ð/nþ1
2;iþ1 � /nþ1

2;i Þ�; ð28Þ

1þ bcDt
g2

rnþ1
t;i

� �
/nþ1

2;i ¼ a/n
2;i þ ð1� aÞ/n�1

2;i �
bcDt

5g2Dz
½2ð/nþ1

1;iþ1=2 � /nþ1
1;i�1=2Þ þ 3ð/nþ1

3;iþ1=2 � /nþ1
3;i�1=2Þ�; ð29Þ

1þ bcDt
2g3

ðrnþ1
t;i þ rnþ1

t;iþ1Þ
� �

/nþ1
3;iþ1=2 ¼ a/n

3;iþ1=2 þ ð1� aÞ/n�1
3;iþ1=2 �

3bcDt
7g3Dz

ð/nþ1
2;iþ1 � /nþ1

2;i Þ; ð30Þ

1þ
4bcDtrnþ1

a;i

cnþ1
V ;i ðT

�
i Þ

3

" #
Tnþ1

i ¼ aTn
i þ ð1� aÞTn�1

i þ
bcDtrnþ1

a;i

cnþ1
V ;i

½/nþ1
0;i þ 3ðT�i Þ

4�: ð31Þ
The material conduction term has been dropped from Eq. (31) because the 1D test problems presented in the next two sec-
tions do not include that physics. In Eqs. (28) and (30), note that the total opacity has been averaged just as was done in Eq.
(17).

Because of the spatial derivative of /2 in Eq. (23), it is not possible to follow the P1 procedure from the previous section of
combining the zeroth and first moment equations to obtain a single equation for the radiation energy density. Since the pur-
pose of this paper is only to evaluate test problems in one dimension and not to build a robust 1D algorithm, Eqs. (27)–(31)
will be used as presented. More iterations are required than if a more sophisticated algorithm were used; however, as long as
the time step is kept small, the iteration process converges quickly. In Section 5, a simple test problem will demonstrate a
lack of convergence for large time steps.

For the P5 equations, one replaces Eq. (30) and adds two equations for the next higher moments
1þ bcDt
2g3

ðrnþ1
t;i þ rnþ1

t;iþ1Þ
� �

/nþ1
3;iþ1=2 ¼ a/n

3;iþ1=2 þ ð1� aÞ/n�1
3;iþ1=2 �

bcDt
7g3Dz

½3ð/nþ1
2;iþ1 � /nþ1

2;i Þ þ 4ð/nþ1
4;iþ1 � /nþ1

4;i Þ�; ð32Þ

1þ bcDt
g4

rnþ1
t;i

� �
/nþ1

4;i ¼ a/n
4;i þ ð1� aÞ/n�1

4;i �
bcDt

9g4Dz
½4ð/nþ1

3;iþ1=2 � /nþ1
3;i�1=2Þ þ 5ð/nþ1

5;iþ1=2 � /nþ1
5;i�1=2Þ�; ð33Þ

1þ bcDt
2g5

ðrnþ1
t;i þ rnþ1

t;iþ1Þ
� �

/nþ1
5;iþ1=2 ¼ a/n

5;iþ1=2 þ ð1� aÞ/n�1
5;iþ1=2 �

5bcDt
11g5Dz

ð/nþ1
4;iþ1 � /nþ1

4;i Þ: ð34Þ
The material equation is not changed.
Marshak boundary conditions are applied to the odd moments at the left and right boundaries. For isotropic incident radi-

ation fields at z = 0 and z = Z,
Ið0;l; tÞ ¼ cIincð0; tÞ
4p

for l P 0; ð35aÞ

IðZ;l; tÞ ¼ cIincðZ; tÞ
4p

for l 6 0; ð35bÞ
the odd Legendre moments on the boundary are
/inc
1 ð0; tÞ ¼

1
4

Iincð0; tÞ; /inc
3 ð0; tÞ ¼ �

1
16

Iincð0; tÞ; /inc
5 ð0; tÞ ¼

1
32

Iincð0; tÞ; ð36aÞ

/inc
1 ðZ; tÞ ¼ �

1
4

IincðZ; tÞ; /inc
3 ðZ; tÞ ¼

1
16

IincðZ; tÞ; /inc
5 ðZ; tÞ ¼ �

1
32

IincðZ; tÞ: ð36bÞ
For the test problems in Sections 4 and 6, reflecting boundary conditions are required. Then the odd Legendre moments on
the boundaries are fixed at zero.
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Before solving these equations, the scale factors on the time derivatives, the g’s, must be specified. For the P1 equations a
simple analysis shows that g = 1/3 is required to achieve wave propagation at the correct value of c in low opacity media. For
the higher-order methods, the correct coefficients are determined here from numerical experiments. For P3 and P5, there are,
respectively, three and five different coefficients with many different values possible. After examining many options, three
choices seemed to be the most appropriate. (a) Modify only the coefficient in the highest-order equation, leaving the others
at unity. (b) Modify only the odd moment coefficients, setting them equal to each other, and leave the even-order coefficients
at unity. (c) Modify all coefficients equally, setting them all to the same value. Table 1 shows the resulting coefficients that
give a propagation velocity of c.

Calculations done with each set of g parameters are similar, but not identical, to calculations done with the other sets. The
shape of the wave being propagated is slightly different in each case. In principle, one could adjust the coefficients to give a
best fit to a particular problem of interest. However, there is no guarantee that such a choice of coefficients would also be
best for the next problem.

Ref. [9] made the suggestion of using a diffusion-like approximation for the highest PN order by dropping the time deriv-
ative term. Presumably, this approximation would decrease the oscillations in the numerical solutions, but it also signifi-
cantly increases the wave propagation velocity. For P5, decreasing g5 from 0.44 to 0.2 increases the wave speed from c to
1.24c. This seems to be an unacceptably large increase. Therefore, this author attempted to use some flux-limited diffu-
sion-like approximations for Eq. (34). Numerical difficulties arose that prevented successful calculations; therefore, this ap-
proach was discontinued.

4. One-dimensional Su and Olson test problem

An analytic solution to the transport equation coupled to a material equation without conduction has been published in
[14] that corresponds to using N =1. In order to make the solution tractable, the opacity was chosen to be constant (ra = 1)
and the heat capacity was chosen to be proportional to the cube of the material temperature. This enables a transformation
that converts the material equation into a form that is linear in T4. An internal source of radiation is used along with reflect-
ing boundary conditions. See [14] for a complete description and [2] for comparisons of other approximate solutions to this
analytic solution. More recently, an analytic solution for the P1 approximation to this test problem has been published [15].
This allows one to directly test the solution of the lowest-order equations given by Eqs. (1) and (2). As the spatial and tem-
poral meshes are refined, the numerical solution must converge to the analytic solution. The numerical solutions presented
here do converge to the analytic solution. While the analytic solutions use an initial condition of zero radiation energy den-
sity, for convenience, the numerical solutions here use a finite initial radiation energy density of 10�4.

Unfortunately, the analytic solutions in [14,15] are tabulated on spatial meshes that are too coarse to be used to demon-
strate second-order temporal convergence. Therefore, a numerical solution using a very small time step will be used as a
reference solution. Define the time step tolerance for change as
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where the maximum over i represents all cells. Based on the changes between two times, the next time step, Dt, is chosen to
give the desired value for s. The accuracy of the numerical solution will be shown for the range 0.0125 6 s 6 1.25. As a con-
vergence metric, the root mean square relative difference of the radiation energy density from the reference solution is de-
fined as
RMS Error �
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The reference solution is done with s = 0.00125.
In Fig. 1, the P1 solution uses g = 1 and is evolved to a time of ct = 3 on a spatial mesh of 300 points equally spaced from

zero to 3. The first-order solutions are done with a = b = 1 in Eq. (4) and all the other time evolution equations. This choice
gives a simple backward Euler solution. The first-order solution at s = 0.1 requires 632 time steps to reach ct = 3 while the
ts that give velocities of c.

g1 g2 g3 g4 g5

1.0 1.0 0.43
0.74 1.0 0.74
0.84 0.84 0.84
1.0 1.0 1.0 1.0 0.44
0.87 1.0 0.87 1.0 0.87
0.924 0.924 0.924 0.924 0.924
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Fig. 1. The convergence error is shown as a function of the time step tolerance. The solid lines are for reference to show slopes of one and two.
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second-order solution requires 831 time steps (31% more). The backward Euler solution required fewer time steps because it
is more diffusive and smears out the solution at the front of the wave. At s = 0.0125, the backward Euler solution takes only
5% fewer time steps than the second-order method because there is much less numerical diffusion at this smaller time step.

The P3 results shown in Fig. 1 use all g’s = 1 and are done on a uniform mesh of 350 points from zero to 3.5. A slightly
larger mesh is required than for P1 because the wave front propagates faster with P3. The errors are shown only for small
time steps because the algorithm presented in the previous section does not converge for larger time steps. The algorithm
is adequate for examining the oscillations in numerical solution, but it is not a robust general-purpose solution technique.
The reference solution in this case is a P3 solution done with the same small time step tolerance (s = 0.00125). There is no
analytic solution for the N = 3 approximation.

Clearly, the second-order solutions in Fig. 1 are much more accurate than the first-order solutions. Over a wide range of
time steps, the RMS Error closely follows the expected slope of two. The first-order solution shows linear convergence only
for small time steps. When using even moderate-sized time steps, numerical diffusion spreads out the toe of the numerical
solution. The RMS Error is chosen here to be a relative error; therefore, it is sensitive to errors at small values of the radiation
energy density.

Now that second-order temporal convergence is demonstrated, the next step is to find ways to modify low angular-order
solutions to look more like the high angular-order solution. Therefore, the computer code used by Su and Olson [14] was
used to generate the exact solution to the full (N = 1) transport solution on a much finer spatial mesh at a time of ct = 3
than was published in [14]. This allows one to use a least squares measure to determine the goodness of fits when trying
to modify the low-order solutions to look like the high-order analytic solution. Because this problem has a source region that
is one optical depth in size, and because the opacity is of the same order as the problem size, this problem is quite diffusive
and it is easy to fit with moderate order of PN. Also, because it includes absorption and re-emission by the material, there is
already some effective scattering of photons. Therefore, there are no oscillations in any of the numerical solutions.

The best fit for a modified flux-limited diffusion solution was obtained using rs = 0.25. For the PN solutions there are two
approaches: (a) adjust the time scaling parameters (g’s) using no artificial scattering, or (b) set the g’s to give the correct
wave propagation velocity and vary the artificial scattering to fit the problem. For P1, good fits are found using (a)
g = 0.36 and rs = 0, or (b) g = 1/3 and rs = 0.26. For P3, the good fits are (a) g1 = g2 = 1, g3 = 0.52, and rs = 0, or (b)
g1 = g2 = 1, g3 = 0.43, and rs = 0.23. For P5, the two good fits use either (a) g1 = g2 = g3 = g4 = 1, g5 = 0.65, and rs = 0, or (b)
g1 = g2 = g3 = g4 = 1, g5 = 0.44, and rs = 0.11. This problem is so easy that a slightly modified P5 solution almost exactly goes
through the analytic solution. No figures of these solutions are shown here because the curves differ so little from each other
that a meaningful graphical representation is difficult to create. Refs. [2,14,15] present graphs of the solutions to these prob-
lems for the reader interested in visual representations.

Only mild conclusions can be reached from this test problem. Small amounts of artificial scattering improve the accuracy
of flux-limited diffusion and low-order PN solutions. Only a moderate order is required to accurately reproduce this analytic
solution.

5. One-dimensional optically thin test problem

To test transport in an optically thin medium, the absorption opacity is fixed at 0.1 with no temperature dependence. Iso-
tropic radiation with unit intensity is applied to the left boundary and zero intensity is applied to the right side. Initially, the
slab has zero radiation energy density. In order to make this a simple radiation only problem, the material temperature is set
to zero and no material equation is solved. The exact full transport solution to this problem can be found in terms of expo-
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nential integrals, but the details are not relevant here. For a small opacity, the distribution of radiation energy density in
space looks roughly like a triangle with its base expanding at the speed of light.

Fig. 2 shows the P1 numerical solution to this problem at a time of ct = 3. The analytic solution to the P1 equations in this
case is given by
ig. 2. T
ompare
E ¼ 1
2

exp �rx
ffiffiffiffiffiffi
3g

p
ct

 !
for x <

ctffiffiffiffiffiffi
3g

p : ð39Þ
For larger values of x the energy density is zero. So the exact solution has a gradual monotonic decrease from 0.5 at the origin
until it gets to the wave front and then it drops discontinuously to zero. This discontinuity causes the numerical oscillations
seen in Fig. 2. Using the same time step size, a backward Euler solution has smaller oscillations. However, as the time step is
decreased, the oscillations in a first-order solution grow to match the oscillations of the second-order solution. When g is
decreased from unity to 1/3, the wave propagates farther in the same amount of time so the discontinuity at the wave front
is smaller. This causes the amplitude of the numerical oscillations to be smaller. The discontinuity is the result of truncating
the transport solution by assuming a linear variation in angle. The oscillations are the result of the spatial discretization’s
approximation to the discontinuity.

Arbitrarily adding scattering to the solution makes a dramatic change, as shown in Fig. 2. The oscillations are reduced to
tiny wiggles and the over all shape more closely follows the full transport analytic solution. Physically, artificial scattering is
redistributing the photons away from the assumed linear distribution, thus greatly reducing the spatial discontinuity. This
problem with streaming radiation is being made to look more diffusive.

Ref. [1] found that simple time-centered Crank–Nicolson second-order time differencing generated non-physical numer-
ical oscillations when using large time steps in the solution of the diffusion equation for the 2D test problem discussed in the
next section. The oscillations shown in Fig. 2 are of a quite different nature. As the time steps are increased, the oscillations
smear out in space because numerical diffusion increases. They do not get worse with large time steps. As mention in the
Introduction, different spatial discretizations will generate different sized oscillations. Therefore, the results presented here
are specific to the spatial and temporal differencing presented in Section 2. This author has not seen any cases of numerical
oscillations caused by the second-order time evolution scheme used here; however, McClarren et al. [10] refer to unpub-
lished calculations where this scheme may have caused unexpected oscillations.
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Ref. [18] proposes a hybrid backward Euler and Crank–Nicolson scheme to reduce oscillations induced by time discret-
ization. Their method uses the numerical diffusion of the first-order method to smear out oscillations. Using an artificial scat-
tering opacity alters the differential equation to reduce the discontinuities and numerical oscillations caused by either time
or spatial discretizations. The advantages and disadvantages of these two different approaches depend on personal prefer-
ences and the particular problem being solved. In the next section, it will be shown that artificial scattering can also be used
to reduce PN wave oscillations that are not caused by numerical discretizations.

Fig. 2 also shows diffusion solutions with and without flux limiting. With no flux limiting the radiation flows quickly out
of the shown solution domain and far too much energy is propagated into the slab. Adding a flux limiter (see discussions in
[1,2]) limits how far the radiation penetrates. One inherent feature of diffusion is that there are no oscillations, but this gain
is at the expense of adding a nonlinearity to the equations through the flux limiter. Like P1, diffusion assumes that the radi-
ation intensity varies linearly in angle. Therefore, too much energy is propagated too quickly and the solution is greatly im-
proved by adding some artificial scattering.

Fig. 3 shows the P3 and P5 solutions for this same thin slab problem. Comparing Figs. 2 and 3 shows that adding each odd
order to the solution adds another level region and another discontinuity to the numerical solution. For the calculations in
Fig. 3, only the highest order time coefficient was modified. The other scale factors were left at unity. The positions of each
discontinuity in the solution can be modified by choosing different values for the g’s. Artificial scattering was added in each
case to provide a best fit in a least-squares sense to the analytic solution. Clearly, as the order of the approximation is in-
creased, less artificial scattering is required. Increasing the propagation velocity to match the speed of light and including
artificial scattering both decrease the oscillations in the solutions. However, the oscillations do not disappear. Adding enough
artificial scattering to completely eliminate all oscillations causes the solutions to fall well below the full transport analytic
solution. In an attempt to reduce the confusion of overlapping oscillating curves, the solution using g5 = 0.44 and no artificial
scattering is not shown. The unmodified P5 solution propagates a wave front only a bit slow, at 0.94c.

6. Two-dimensional multi-material test problem

An interesting and difficult 2D multi-material test problem that has a central blast wave moving out around two square
objects was presented and used in [19,20]. The opacity varies inversely with the cube of the material temperature (ra = 1/T3)
and the square objects in the path of the radiation flow have opacities that are 1000 times larger than the surrounding med-
ium. They [19,20] used a scaled hydrogen-like Saha ionization model for a simplified, but physically plausible heat capacity.
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This added nonlinearity causes some numerical methods to fail when large time steps are used [21]. Here the mesh size will
be 1282 and the many details will be treated just as in [1]. The interested reader is referred to these earlier papers for more
information.

Fig. 4 shows the time evolution for a P1 solution (with g = 1/3) of the radiation energy density along one axis of this test
problem. The radiation is initially peaked with a Gaussian shape centered at the origin and the material temperature is set
equal to the radiation temperature: T = Tr = E0.25. The maximum energy density at the origin is 100 while the minimum away
from origin is 10�3; therefore, the minimum temperature is T = 10�0.75 = 0.178 and the maximum opacity in the main med-
ium is ra = 178. The radiation flux is initially set to zero, F(x,y,0) = 0. The boundary conditions are reflective and there are no
sources of energy. The flux-limited diffusion (FLD) solution does not develop the hole in the radiation energy density shown
in Fig. 4. The negative values for E near the origin persist for many time steps. Because of its initial high temperature and the
presence of thermal conduction, the material temperature does not go negative when using g = 1/3. However, if one uses
g = 1, the radiation energy density is more negative and the material temperature does go negative. Because the Saha heat
capacity is not defined for negative temperatures, this stops the calculation. Adding an artificial scattering of rs = 3 prevents
E from going negative when using g = 1/3. For the case g = 1, an artificial scattering of 6 is required to prevent negative radi-
ation energy densities.

The P1 solution in this test problem is attempting to propagate the radiation as a ring that moves out from the origin. The
artificial scattering is smearing this ring; therefore, the peak amplitude of the radiation energy density in this ring is de-
creased as the hole is filled. The ring is an artifact of this low-order solution and is inherent to the wave nature of the PN

equations. A full transport solution (N =1) would show the energy density decreasing monotonically from the center at
all times. The added scattering is much smaller than the cold opacity; therefore, it has only a small effect on the outward
propagation velocity. Because of the large opacities and the material coupling, there are no discontinuities or numerically
induced oscillations in this test problem.

A P5 solution would probably show three rings propagating out from the origin. Each ring would expand at a slightly dif-
ferent velocity. Until someone does the calculation, it is not known whether or not the energy density at the origin would
become negative. If negativities occur, it is likely that a smaller artificial scattering would be required than for P1.

The temporal convergence errors for this 2D problem are shown in Fig. 5. Both the P1 and flux-limited diffusion solutions
were done with an artificial scattering of 3. The P1 solution used g = 1/3. Again, the first-order solutions were done with
a = b = 1 in Eq. (4). Since the equations are being solved with the same time differencing and the same operator splitting,
it is not surprising that the convergence errors for FLD and P1 are essentially identical in Fig. 5. The results are shown at
ct = 6, the same time used by other authors [1,19,20]. The first-order and second-order solutions closely follow the expected
slopes.
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As was found in [1], the second-order solutions take the same or slightly less computational time than the first-order
solutions. For s = 0.1, the first-order solution used 1833 time steps and 385 s of computing time to get to ct = 6. The sec-
ond-order solution used 1902 time steps and 374 s of computing time. The second-order method used 4% more time steps
and 3% less computer time while generating a solution that has an RMS Error that is 60 times smaller. Most second-order
methods take much more computational resources, time and memory, to achieve second-order time convergence. With
the operator splitting technique used here and in [1], the only difference in the equations between first- and second-order
are the values of the coefficients a and b. The second-order method does require an extra array of storage for the values at
time level n � 1. When using the second-order technique, one has b < 1; therefore, the terms being iterated to convergence
are smaller in second-order than in first-order. Therefore, the time required to reach convergence at each time step is slightly
less in second-order. Slightly more time steps are used for the second-order solution because the wave front is slight steeper
than when using the more diffusive backward Euler method. For more discussion of computational efficiency, see Ref. [1].

7. Summary

The second-order time evolution technique that Ref. [1] applied to the flux-limited diffusion equations has been applied
here to the PN equations. Second-order methods allow much larger time steps to be used. This is an advantage only if the
second-order technique itself is not computationally expensive. Since the technique presented here and in [1] is computa-
tionally slightly faster and significantly more accurate than the first-order backward Euler method, it is a big improvement
over first-order solutions.

Artificial scattering has been shown to dampen the oscillations in PN solutions and can be used to prevent negative radi-
ation energy densities. Including an artificial, non-physical scattering for numerical purposes is much easier than the differ-
ent methods that have been used to reduce the problem of ray effects in low-order SN solutions to the transport equation. It
has been found that ray-effect mitigation techniques are highly problem dependent [4]. What works well for one problem
with one geometry does not work well for the next problem with a different geometry. Adding artificial scattering will work
much better in some problems than others. In radiation hydrodynamics problems with nonlinear opacities, a small amount
of added scattering will have little effect on most of the solution. In neutron transport where scattering is a dominant part of
the physics, adding scattering may distort the whole solution. The biggest advantage of artificial scattering is that it is
numerically easy. One just increases the size of an existing term. No new numerical methods are required.

Also, it has been shown how simple scale factors on the time derivatives can be used to correct the velocity of wave prop-
agation so that low-order PN solutions exactly match the speed of light in optically thin media.
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